If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-18x-16=0
a = 4; b = -18; c = -16;
Δ = b2-4ac
Δ = -182-4·4·(-16)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{145}}{2*4}=\frac{18-2\sqrt{145}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{145}}{2*4}=\frac{18+2\sqrt{145}}{8} $
| 5(4+x)-7=7(x-5) | | 1-5a=7a+1 | | 5x-3=4-6x | | -11+x/2=15.2 | | 7-(5t-13)=-12 | | 3(15x+25)=345 | | -2n-4=0 | | 3.7(6.5r-10.3)=90.6 | | (x-3)^2=19 | | 3h-18=2(5-2h) | | (0.3x-0.4)(0.04x+3)=0 | | X^y=128 | | 3/4=x-3 | | 4x(2x+10)=0 | | (3/2)x+4=2x-5 | | 9x+4=-8+7x+18 | | 7+2x=x+3 | | −s+77=6 | | 90=3y+5 | | 2^x=16.76 | | x=186 | | (1+x)^30=3 | | 2X+9^x=5 | | M-8=-2m+10 | | 2(7x+1)+3=21 | | 32=8(3x=7) | | .50x+.45(50)=49.5 | | 2x+3+4=5x+10 | | 1.06(12.95+x)=31.27 | | 2x/x+1+x/x-1=3x*2-4/x*2-1 | | 8x+2=6x+16 | | 13.73+1.06x=31.27 |